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Abstract

Purpose of review A rapidly changing climate is weakening the resilience of forest ecosystems through vitality loss of major
native tree species, which reduces the ability of forests to deliver ecosystem services. Established invasive tree species (EITS)
may take over the vacant space potentially preventing the regeneration of the preferred native tree species. This paper aims
to investigate how expansion of these invasive non-native tree species can be addressed in a context of climate-smart forest
management, considering alternatives to costly and often ineffective EITS control measures.

Recent findings We found that forest ecologists increasingly recognize that climate-smart forest management, in particular
tree species diversification and close-to-nature forest management, can strengthen the resilience of forests against negative
impacts by EITS. In the resulting resilient forest ecosystems, a more closed canopy may deprive EITS of their invasive nature,
and EITS may contribute to climate change adaptation.

Summary This review proposes new pathways for forest management transcending the apparent incompatibility between
the dominance of EITS and the adaptation capacity of forests and forest management to climate change. Adaptive measures
to increase the resilience of forests to climate change may prevent the dominance of EITS. Under such conditions, useful
functional traits of these tree species may even contribute to maintenance or enhancement of biodiversity, provisioning of
ecosystem services and adaptation to climate change.

Keywords Climate-smart forest management - Non-native species - Invasiveness - Invasibility - Biodiversity - Forest
restoration - Ailanthus altissima - Eucalyptus globulus - Pinus radiata - Prunus serotina - Robinia pseudoacacia

Introduction

Global change, caused by the rapid increase of human activi-
ties and the anthropogenic emissions of greenhouse gases,
threatens the functioning of forest ecosystems. Climate
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warming and biological invasions are among the major
drivers of ecosystem change, and they are often connected
through positive feedback loops [1, 2]. These stressors may
affect forest structure and functioning by changing abiotic
conditions, vegetation structure and species composition
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[3-8]. Rapid climate warming triggers more frequent and
heavier disturbances—including wildfires, windstorms,
droughts, insect, and pathogen outbreaks—threatening the
ability of forest ecosystems to provide ecosystem services [1,
9-11]. Also, establishing non-native invasive species cause
changes in ecosystem structure and functions [12-25].

Tree species have been moved across continents in the
past for various reasons (e.g., landscape aesthetics, ecosys-
tem restoration, enrichment of biodiversity or wood produc-
tion) and in many cases have become part of regional tree
species pools worldwide. Some species stand out because
of their competitive behaviour and other impacts on eco-
systems, and are referred to as ‘invasive’. Research on the
effects of non-native tree species in forests often focuses on
the prevention of new invasions. In this review, we focus
on invasive tree species that are already well established
and widespread, here called; ‘Established Invasive Tree
Species’(EITS).

EITS can be harmful to non-forest native ecosystems,
like grasslands, rangelands, and savannas [26-28]. As fast-
growing tree species with pioneer traits and colonisation
potential, they may turn these vegetation types into forests,
resulting in potential local extinctions of light-demanding
species [28-30]. Covering the impacts of EITS in this con-
text is out of the scope of the paper. Yet, these species may
also have significant impacts on forest-related biodiversity,
ecosystem processes and related ecosystem services [25,
28, 31-35]. They may directly or indirectly influence the
availability of resources for other species by causing dras-
tic changes in the biotic or abiotic environment (e.g., by
shading, competition for belowground resources, effects
on biogeochemistry through rich litter, N-fixation) [36-38]
hampering the regeneration of native tree species [39—42].
In fire-prone regions, EITS can alter fire regimes by increas-
ing fuel availability and flammability [43, 44]. Addition-
ally, EITS may have a high potential for conflict with nature
conservation objectives, since they are usually not part of
the target forest composition [45, 46]. Yet, some benefits of
EITS have also been reported [47-49]. Such benefits may
include contributions to species richness [50-52], enhance-
ment of nutrient availability [S3-55], provision of ecosystem
services [56-58] and genetic conservation of EITS threat-
ened in their native habitat [59].

As forest managers seek a pragmatic way to deal with
EITS, the climatic conditions under which they do so are
also changing. Global average temperatures have risen rap-
idly in recent decades, with ensuing droughts and heat waves
[60]. The effects of climate change have caused increased
tree mortality on all continents [61-63]. Sometimes forests
were unable to recover [64], while in other situations, forests
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reacted by shifts in tree species composition [65]. These
observations suggest that persistent and progressive changes
in global forests may occur in response to climate change
so that the provision of ecosystem services, such as climate
regulation, biomass production, food, medicine, water sup-
ply and purification, pollination, and habitat provision for
forest species, may decline [66—68]. Often EITS are better
adapted to these changes, possibly due to higher ecological
plasticity and thus broader ecological amplitude of tolerated
ecological conditions [57, 69, 70].

The disturbances caused by climate change may also
increase the susceptibility of forests to biological invasions
due to reduced dispersal, establishment and recruitment
of late-successional, long-lived tree species. These condi-
tions favour pioneer trees with high turnover rates, which
are attributes of most EITS. Moreover, resources released
through mortality, such as light, can locally facilitate the
expansion of shade-intolerant EITS. [71-77].

In addition to natural forests with drought-intolerant
native trees, forests sensitive to climate change often turn
out to be highly disturbed ecosystems with altered abiotic
conditions and species composition—such as plantations
or forest expansion on abandoned industrial and agricul-
tural sites. Such altered forest ecosystems with abiotic and
biotic conditions outside the historical range of variability
of a given place are examples of novel ecosystems [50, 51,
78-80]. One expected outcome of climate change is that
many of these novel systems will emerge worldwide, with
increasing occurrence of EITS as a consequence [81-83].

In research on the resilience of forest ecosystems, the
presence of these EITS is commonly perceived as a threat
[84-86], whereas some non-invasive, non-native tree spe-
cies are sometimes expected to contribute to biodiversity,
ecosystem services and climate change adaptation [87-90].
In management practice, however, this division between
non-invasive and invasive established tree species is not that
clear-cut [46], and even EITS can contribute to the provi-
sion of ecosystem services [67, 91]. Forest managers and
researchers notice that under some circumstances EITS can
also contribute to the resilience of forests to the changing
climate [57, 92, 93].

One of the main contributions to resilience may be filling
vacant niches, so that some aspects of structure and func-
tions recover faster after a disturbance. For instance, some
EITS may operate as nurse trees—by regulating the forest
microclimate and sometimes promoting litter decomposition
— and stimulate forest succession [94-97]. In the scientific
literature, these benefits of EITS, based on the same pro-
cesses that were interpreted previously as signs of invasive-
ness, have received little research attention so far.
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Although human-induced climate change and the pres-
ence of invasive species are relatively new phenomena, pres-
sure from stressors is part of any forest ecosystem. The set
of mechanisms that jointly ensure the survival and renewal
of forest ecosystems under environmental stress will deter-
mine their resilience. In forest ecology, various resilience
definitions are used that do not all agree [98, 99]. In this
paper resilience is understood as the capacity of a forest
ecosystem to absorb (resist) environmental changes (pres-
sures) and natural and anthropogenic disturbances (pulses)
without losing its structure and functions while adapting to
the changing environmental conditions, the so-called eco-
logical resilience [99-101].

Strictly speaking, forest resilience is often considered to
be relative to one specific ecosystem service (e.g., wood
production) [98, 102]. However, in most cases forests are
expected to provide a wide range of ecosystem services [1, 4,
11, 57, 68, 103]. Thus, the concept of resilience commonly
refers to the stability in providing a set of ecosystem services
under changing conditions.

In this review we investigate how the presence of EITS
can be addressed in the context of climate-smart forest man-
agement, aiming to strengthen forest resilience to climate
change. We consider the presence of EITS to be no longer
avoidable in many regions, already present in forests and
often in high density. So, in this context, EITS are not con-
sidered as potential or actual threats to forests but as ele-
ments that are already present, with a potential contribution
to forest resilience against climate change. When we refer
to changes in external conditions, we specifically mean the
effects of ongoing climate change.

Our research question is twofold:

(1) How can EITS be integrated in forest ecosystems and
forest management so that these tree species contrib-
ute to forest biodiversity and forest-related ecosystem
services?

(2) Can EITS themselves contribute to the climate change
adaptation capacity of these forests?

Materials and methods

We carried out a literature review on the role of EITS in for-
est resilience enhancement to climate change in three steps:

(1) Identification of challenges and benefits of EITS and
the possibilities of integrating EITS in forest ecosys-
tems (see section ‘EITS challenges and opportunities’);

(2) Describing the impact of integrated EITS on biodiver-
sity and ecosystem services, with a focus on timber
production (see section ‘Contribution of integrated
EITS to species diversity and wood production’);

(3) Exploring the effects of EITS on climate resilience and
their potential to contribute to climate change adap-
tation (see section ‘Contribution of EITS to climate
resilience’).

We used an informal iterative workflow in which we
interpreted data from the literature using expert knowledge
and concepts developed by the authors based on years of
experience with EITS in forests. We searched for relevant
articles in databases such as PubMed, Scopus, and Web of
Science. We also consulted experts in the field and discussed
the findings with them. Based on the findings, we created a
list of key points and synthesised the results of 466 publica-
tions, mainly published in the period after the year 2000.

In this review, we restrict ourselves to the impact of tree
species on forest ecosystem functioning and the provision
of ecosystem services. Therefore, we do not include societal
impacts or origin of a species as is often done in assess-
ments of impacts of biological invasions [104-107] but use
an ecological definition of invasiveness in which the term
describes the competitive advantages that enable a species
to proliferate rapidly and conquer new environments [31,
108-112]. Moreover, since EITS are just as permanently
present as native tree species in many parts of the world, we
separate ‘invasive’ from ‘non-native’ [113]. The two dual
concepts, invasive vs non-invasive and native vs non-native,
yield four possible combinations of these terms. ‘Invasive
non-native’ and 'invasive native' both indicate species that
exhibit an invasive character . In this ecological definition of
invasiveness, invasive species sustain self-replacing popu-
lations over several life cycles, produce reproductive off-
spring, often in very large numbers, and have the potential
to spread over long distances [31, 108—110]. In forests, inva-
sive tree species appear to exhibit typical pioneer behaviour:
early seed setting, easy spreading and rapid juvenile growth
[35, 92, 114]. These pioneer tree species usually have high
light requirements upon establishment [115]. From the
extensive lists compiled of invasive tree species [28] we will
refer in more detail to five globally widespread EITS, which
are each appealing examples in different parts of the world:
Ailanthus altissima (Mill.) Swingle, Eucalyptus globulus
Labill., Pinus radiata D. Don, Prunus serotina Ehrh. and
Robinia pseudoacacia L. See Table 1 for an overview of
their occurrence. A short characterisation of each species,
based on this review, is given in separate boxes (see Boxes
1,2,3,4,and 5).
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Table 1 EITS with the

EITS Box
continent of origin (O), the . . . . R .
continent where they are Continent Africa North America South America Asia Europe Oceania
considered invasive (1) 1281 and — yup g atissima 1 I I on 1 I Box 1
reference to the box with short
descriptions of each species Eucalyptus globulus 1 I 1 O/1 Box 2
Pinus radiata I (0] I I | Box 3
Prunus serotina I (@) 1 Box 4
Robinia pseudoacacia 1 O/1 I 1 Box 5

Invasiveness of EITS appears to vary considerably,
from the highly invasive P. serotina [116—119]—thanks
to efficient dispersal by birds and mammals over short and
long distances -, over the moderately invasive A. altissima
[120-123], P. radiata [28, 29, 76] and R. pseudoacacia [54,
70, 124]—thanks to efficient wind dispersal -, to the limited
invasiveness of E. globulus [125-131].

To organise all gathered information and gain insight into
the possibilities for enhancing forest resilience to EITS and
climate change, we first developed a conceptual framework
for forest resilience under climate change (see section ‘For-
est resilience framework’). This framework was also valua-
ble to address the abundant information on forest adaptation
to climate change, resilience against dominance by EITS,
and possible contributions of EITS to forest adaptation to
climate change. Moreover, it helped us to bridge the appar-
ent contradiction between reducing EITS by strengthening
forest resilience, and the possible positive contribution of
these EITS to the resilience of the forest ecosystem against
climate change. Finally, in the conclusion section, we for-
mulate scenarios and possible solutions for a way forward
for EITS integration based on our findings and synthesis.

Forest resilience framework

Following the previous definition, forest resilience has two
major components—absorption and adaptation -, both eco-
system reactions to stress grounded in ecosystem processes
[132, 133]. Absorption refers to the plasticity of the ecosys-
tem under relatively stable environmental conditions, both
at the level of organisms and of the system as a whole. This
concept aligns closely with the definition of engineering
resilience. Under stable conditions the frequency and inten-
sity of disturbances—such as storms, fires, wood harvesting,
diseases, and pests — remain within the absorptive capacity
of the ecosystem operating under a dynamic equilibrium.
This ensures continuity in the composition, structure and
functioning of the ecosystem [10, 134]. But when the resil-
ience of a forest ecosystem is weak—e.g., due to extreme
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herbivore pressure—or the character, intensity or frequency
of disturbances fundamentally changes as a result of chang-
ing conditions—e.g., climate change and invasive species—
then ecosystem processes may not be able to secure the per-
sistence of individuals and recovery of populations. This is
where ecosystem adaptation comes into play. Under these
changed conditions, the ecosystem develops into one with a
different composition, structure and functioning [10, 134].
The interplay of absorption and adaptation, as used in this
paper, is also called ecological resilience [135, 136].

The dichotomy between absorption and adaptation, as
proposed in literature [99, 101, 135] naturally connects to
the practical discussion on climate change adaptation. For-
est managers try to increase forest resilience for securing
ecosystem services by optimising ecosystem processes based
on the current vegetation composition, thus, relying on the
ecosystem’s absorption. When it becomes clear that the cur-
rent suite of forest tree species face a high risk of losing their
vitality due to changing climatic conditions, the forest tree
species composition may be adapted in an ongoing and long
process by adding new provenances or species, both natives
and non-natives [137]. In this way, the absorption capac-
ity is complemented by the adaptation capacity. These two
components of resilience, absorption, and adaptation, fit well
with the two questions this paper addresses.

(1) First, what effect has absorption of EITS within forest
ecosystems on their components — e.g., abiotic condi-
tions, vegetation structure and species composition —
on forest biodiversity and ecosystem services?

And secondly can EITS, as an absorbed component of
tree diversity and redundancy, contribute to absorption
and adaptation of climate change effects?

@)

To clarify the connection between the concepts of
absorption and adaptation with the development of for-
est ecosystems under stress, we developed a forest resil-
ience framework inspired mainly by the unified frame-
work for ecological resilience of Falk et al. 2022 [134]
(see Fig. 1).
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Fig. 1 Framework for forest resilience. Under constant climatic con-
ditions Complex Forests will preserve their structure and functions
through absorption of stress. Simplified Forests under steady state
conditions can, through forest succession, develop into Less Sim-
plified Forest and when a large tree species pool is present in the
landscape, even into Complex Forests. When absorption fails, due

In our framework we make a distinction between simpli-
fied and complex forests. Simplified forests occur where past
land use has led to limited species diversity, limited redun-
dancy, and simplified structure; these conditions can facili-
tate dominance of EITS. Complex forests have a more devel-
oped structure and are richer in tree species as a result of a
lack of management or more extensive management (e.g.,
close-to-nature forestry). They are less prone to EITS domi-
nance. Through forest succession and disturbances under
stable external conditions, simplified forests develop into
less simplified forests, which are more structured and richer
in tree species — if propagules are present. In the presence
of a diverse tree species pool, simplified and less simplified
forests can develop into complex forests, characterised by
structural and compositional complexity.

Absorption and adaptation are two different resilience
components that may occur simultaneously. Under rela-
tively stable climate conditions, absorption of disturbances
dominates in complex forests resulting in continuity of
ecosystem structure and functioning. Under changing cli-
mate conditions, the complex forest ecosystem continues to
absorb disturbances. However, when the absorbing capacity
is exceeded, adaptation may occur, and the complex forest
develops into an adapted complex forest [138].

Legend

Forest succession

Components of resilience

»
AT, 7o

Adapted

Absorption
Complex
Forest Adaptation

to changing climatic conditions, adaptation occurs, involving differ-
ent species or functional groups. Adaptation can lead to an Adapted
Complex Forest while maintaining structure and function of the pre-
disturbance community, or lead to Degraded forest as a result of
altered structure or function (modified after Falk et al. (2022) [134])

As long as the joint processes of absorption and adap-
tation ensure the preservation of structure and function,
we speak of resilient forest ecosystems. However due to
changing climatic conditions—reinforcing already exist-
ing stressors or introducing new ones [82]—forest struc-
ture and function may change, in which case forests may
become insufficiently resilient [134, 139-141]. According
to the FAO Global Forest Resources Assessment, we refer
to these resulting forest ecosystems as degraded forests: for-
ests whose structure and functions are negatively affected
resulting in systems with lower capacity to supply products
and/or services [142]. Simplified and less simplified forests
are more at risk of degradation than complex forests due to
limited diversity and species redundancy [137].

Resilience is often expressed in terms of a system’s
insurance by diversity and redundancy [100, 136, 143, 144].
The functional characteristics of tree species influence their
performance in terms of growth, survival or reproduction [79].
Greater diversity in tree species with different functional traits
is expected to reduce the impact of disturbance or stressors on
the forest [60, 80-82, 145] and provide greater adaptability
[83] (Fig. 2a). Besides the variation in tree species, it is also
important for the resilience of the forest ecosystem that
multiple tree species with similar characteristics occur, in
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Fig. 2 Illustration of the concepts of functional diversity and redun-
dancy within two stands. a. Although the stand in the upper pane con-
sists of only two tree species, it has high functional diversity because
they have very different functional properties: for example, one spe-
cies is a deciduous broadleaf tree, and the other an evergreen coni-
fer. However, because of the large difference in functional properties
between these two species, functional redundancy is weak; if one spe-

case one tree species fails due to climate change effects.
This is called functional redundancy [82, 84, 85] (Fig. 2b).

EITS challenges and opportunities

Significant negative impacts of EITS on biodiversity, eco-
system processes, and related ecosystem services have been
reported [25, 28, 31-35, 146] Conversely, other studies
point at the contribution of EITS to species richness, forest
resilience, ecosystem services, and climate change adapta-
tion [47, 50, 52, 56, 57, 67, 69, 78, 147, 148]. Either way,
EITS may directly or indirectly influence the availability of
resources for other species by causing changes in the biotic
or abiotic environment [36-38].

EITS, for example, affect nutrient availability and soil fer-
tility, which varies greatly among tree species. Whereas P.
radiata may acidify the forest soil, most notably on low-fertil-
ity sites [149], P. serotina [53], A. altissima [37] and R. pseu-
doacacia [150] usually increase nutrient availability. Euca-
byptus globulus litter degrades slowly in monocultures [151],
and the high biomass removal in plantation forestry linked
to the high productivity of this tree species seems to reduce
nutrient availability [152, 153] (See also Table 6). This high
productivity also seems to be the main cause of the sometimes
observed high water consumption in E. globulus plantations
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a. Richness: 2 species
Functional diversity: high
Functional redundancy: low

b. Richness: 6 species
Functional diversity: high
Functional redundancy: high

cies disappears, several specific functional properties are lost. b. The
lower stand also has high functional diversity because it consists of
six different species, four deciduous broadleaf species and two coni-
fer species with relatively similar characteristics. However, functional
redundancy is high in this case because if one species disappears, the
variation in functional traits in the stand will be maintained (adapted
from Messier et al. 2019 [144])

[154]. However, even less productive EITS can influence the
soil moisture availability for other tree species especially when
they have a more efficient water uptake strategy [155].

Light availability can also be affected by the presence of
EITS. Under pioneer conditions such as in spontaneous for-
est development on agricultural land, forest recovery after
fire or in plantations consisting of tree species which form a
translucent canopy, EITS can form dense shrub layers that
alter the light environment that can limit the regeneration
of native tree species for several years to decades [28, 156,
157]. Also allelopathic effects have been demonstrated in
some EITS—e.g., A. altissima, P. serotina, R. pseudoacacia,
E. globulus—under laboratory and experimental conditions
[157-160], albeit with limited impact on tree species regen-
eration and survival under field conditions [37, 55, 161-164].

Yet, EITS may also positively influence forest recovery.
Due to their invasive trait and frequent shade-intolerant
nature, they may rapidly colonize deforested areas and accel-
erate canopy closure. This may benefit survival of many
typical forest plants and animal species as they depend on
the microclimate that prevails in forests [26, 88]. Through
shading and transpiration, the closed crown canopy causes
lower maximum temperatures in summer and higher minima
in winter, while maintaining levels of air and soil moisture
that can be higher than in the open [86, 87, 165].
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TRAITS:
*  Deciduous broadleaf pioneer tree, 20 — 30 m high
*  More climate resilient than competitors
* Positive impact on nutrient availability
* High quality wood, comparable to Fraxinus spp.

NATIVE RANGE:
¢ Eastern China

INTRODUCTION PATHWAYS:
* Horticulture
e Silviculture

INVASION HABITAT:

STATUS:

Australia.

Ailanthus altissima distribution map; colors indicate gradients of occurrence
from limited (yellow) to intensive (red) presence (source: htips:/fwww.gbif.org/ platyphyllos, Tilia tomentosa, Ulmus glabra and

species/3190653).

Ailanthus altissima has often been planted for ornamental reasons in areas
climatically similar to the cool northern side of its native range. Warming of
the climate offers expansion potential here, which A. altissima uses,
piggybacking on road and rail transport. Despite its expansive character, the
review shows that where A. altissima forms mature forests in the presence of
native tree species, the latter rejuvenate easily under its canopy.

* Pioneer species in forest margins and open forests, outside forests in
urban and rural landscapes, heathlands, dry grasslands, and dunes.

¢ Naturalized in all continents but Antarctica. Widespread and
common in its native Chinese range, Europe, North America, and

PICTURE: Native forest development under
mature Ailanthus altissima forest in the Parcul
National Portile de Fier, Romania (with Acer
campestre, Acer monspessulanum, Acer
platanoides, Acer pseudoplatanus, Alnus
glutinosa, Carpinus betulus, Cornus sanguinea,
Corylus avellana, Crataegus monogyna ,
Euonymus europaeus, Fagus orientalis, Fagus
sylvatica, Fraxinus excelsior, Fraxinus ornus,
Juglans regia, Lonicera periclymenum, Prunus
avium, Prunus spinosa, Quercus cerris, Quercus
robur, Sambucus nigra, Tilia cordata, Tilia

Ulmus minor) (Photo Bart Nyssen)

Box. 1 Ailanthus altissima. Effective nurse tree with rapid spread facilitated by climate change

Through their influence on resources, EITS also influ-
ence forest regeneration [39, 40]. Especially when they grow
densely, they can reduce the amount of light reaching the
soil surface. Thus, they may often promote late successional
tree species at the expense of pioneer tree species, thereby
accelerating forest succession. Also, when EITS form the

tree canopy, the influence of their litter on soil development
may play a decisive role. EITS with nutrient-rich leaves may
increase the nutrient availability in the topsoil, thereby facili-
tating the establishment of pioneer and late successional tree
species [134, 166]. This positive effect can, in fact, compen-
sate for allelopathic effects [55, 165].

@ Springer



Current Forestry Reports

Changes due to the presence of EITS in the light environ-
ment and in nutrient and moisture availability in the topsoil
also influences the herb layer. Research into the effect of
EITS on the herb layer also shows conflicting results. EITS
can reduce the biodiversity of the herb layer by promoting a
higher abundance of generalist species [167]. But the main
effects here are a shift from light-demanding to more shade-
tolerant tree species and, in the case of EITS with nutrient-
rich litter, to species bound to a richer forest floor. These
tree species usually promote development towards special-
ist forest species [168]. To a greater or lesser extent EITS
are host tree species for other organisms [54, 87, 169-173].
Co-evolution of species with their host plants has influence
on the species richness associated with tree species. There-
fore, with longer presence of EITS, their role as host plants
increases [169], especially if they are widespread and con-
generic native trees are present [171-174].

These impacts of EITS on the availability of resources
and species composition can have an impact on ecosystem
services and forest biodiversity. Thus, the presence of EITS
may have a high potential for conflict with local nature con-
servation objectives, from which they are mostly excluded
[45, 46]. This is especially the case when these nature con-
servation objectives are derived from strongly human influ-
enced ecosystems, for instance intensively grazed systems
or when tree species composition has been reduced to spe-
cies that form a translucent canopy. In fire-prone regions,
EITS can alter fire regimes by increasing fuel availability
and flammability [43, 44]. In general, flammability varies
strongly between tree species[175]. Some EITS plantations,
such as E. globulus and P. radiata, are highly flammable.
But broadleaf EITS mostly limit the fire risk of the—usually
coniferous—forests in which they are established. A well-
known broadleaved exception to this is E. globulus, which
increases the fire hazard. If grown under a short-rotation,
fire risk of Eucalyptus spp. is no different from Pinus spp.
Older trees develop stringy bark that increases the risk of
fires spreading because of a tendency to disperse embers
from its bark [176].

Integration of EITS into forest ecosystems

The reason for large-scale planting of many EITS, such as
R. pseudoacacia [54], E. globulus [95, 150] and P. radiata
[177] was wood provisioning in short to medium rotation
plantations. Other EITS, such as P. serotina and A. altissima
have been planted for other reasons. For instance P. serotina
was mainly planted in Europe as a companion tree species
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in reforestation, mostly with Pinus sylvestris, besides some
planting for wood production in the nineteenth century [178].
Ailanthus altissima was and is a popular ornamental tree [157]
and, outside China, its country of origin, only small-scale
planting for wood production took place in Austria, Hungary,
Argentina, Uruguay, India and New Zealand [179-182].

All these EITS are known for their ability to become
invasive [58, 183, 184]. The ability of non-native species to
invade new communities depends on their traits and the vul-
nerability (invasibility) of the community [185]. They usu-
ally present pioneer traits associated with plants occurring
in early successional stages of forests—high seed produc-
tion at a young age, fast growth, and short juvenile period—
enabling them to rapidly colonise open spaces inside and
outside the forest [186—189]. EITS usually combine these
pioneer traits with a strong light requirement and high light
transparency. However, there are exceptions. Some EITS
combine pioneer traits—e.g., early seed setting, efficient
propagule spreading and rapid juvenile growth—with late
successional species traits—e.g., shade-tolerant, shade-
casting, and long-lived. The more shade-tolerant and shade-
casting a tree species is, the longer it can dominate forest
succession. Acer platanoides (which is native to Europe and
invasive in other temperate regions) typically is such a tree
species, combining traits associated with early successional
stages [190, 191], with shade tolerance [191, 192], hence
the problems with it in North American forests [190, 191].

Evidence from several studies indicates that very few
non-native species invade successionally advanced plant
communities [185, 189, 193—-196]. Non-native species are
completely missing from undisturbed late successional for-
ests [189, 197, 198], and the high diversity of native tree
species limits forest invasion by EITS [199]. Ecosystem
invasibility is the result of several factors, including physi-
cal environmental characteristics, the competitive ability of
resident species, and the disturbance regime of the habitat
[185, 193, 200, 201]. However, the availability of resources
such as light, nutrients and water facilitates the establish-
ment of EITS [71, 202, 203]. For instance, many EITS have
low moisture and nutrient requirements and thus may out-
compete many native species on sites with reduced nutrient
and moisture availability [15, 58, 94, 204-206]. Ecosystem
invasibility often results from anthropogenic or natural deg-
radation of forest ecosystems [207]. Thus, the dominance by
EITS is usually a symptom, rather than the cause, of limited
forest resilience. Due to climate change, the level of degra-
dation of forest ecosystems is generally expected to increase,
and with it, their invasibility [75, 132, 208].
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Eucalyptus globulus only regenerates in the immediate vicinity of the
mother tree. E. globulus owes its reputation as an invasive tree species
to massive planting in short rotation plantations impeding opportunities
for natural regeneration of other species. But simply increasing rotation
length to beyond 10 to 20 years creates opportunities for establishment

of native species regeneration.
TRAITS:

*  More climate resilient than most competitors

timber applications
NATIVE RANGE:
* Australia
INTRODUCTION PATHWAYS:
e Silviculture.
INVASION HABITAT:.
* Low invasion capacity, even in open forests.

STATUS:

locally elsewhere in the temperate climatic zone.

*  Evergreen broadleaf pioneer tree, growing up to 70 m high

*  Wood: mostly used for pulp and paper, but also high-quality

*  Major occurrence areas globally: Australia (host), Spain,
Portugal, California, South Africa and South America. Occurs

Eucalyptus globulus distribution map; colors indicate gradients of
occurrence from limited (yellow) to intensive (red) presence
(source: https://www.gbif.org/species/3176787).

PICTURE: Native oak and sweet chestnut forest
succession under 140 years old 70m high Eucalyptus
globulus plantation. Souto da Retorta, Galicia, Spain
(Photo Bart Nyssen)

Box.2 Eucalyptus globulus. Bad reputation due to short rotation plantation forestry

This degradation can be countered by diversifying the tree
species composition. Higher species richness results in higher
functional diversity as long as the species in the community
present different functional traits and therefore different strat-
egies to acquire resources [209]. Higher functional diversity
would reduce susceptibility to invasion through the pre-emp-
tion of available resources [210-214]. Additionally, functional
trait similarities between resident species and introduced
species result in overlapping resource requirements and, as a
consequence, in competition among species [209, 214, 215].
As resource requirements overlap increases, competition is
intense, and no more species can establish [216-218].

Thus, forest invasibility is a dynamic attribute that can be
modulated by resource supply, disturbance regimes, and tree
species composition of recipient forest ecosystems [71]. These
factors acting in synergy, determine a complex scenario to pre-
dict the invasibility of forest ecosystems [76]. Nevertheless,
the knowledge of the latter can be used as a management tool
to prevent or control EITS in forests [77, 219]. Due to the

shade-intolerant nature of the set of EITS addressed here, they
are unable to establish in complex forests. Yet, when they are
dominant, their translucent crowns enable establishment of late
successional species, which eventually makes them disappear
from complex forests. However, if the possibility of competi-
tion is limited—by lack of seed trees or intensive foraging by a
high density of herbivores—resources can be utilized by EITS,
thus maintaining their presence [71].

According to this, the possibility of EITS becoming
dominant can be reduced by adjusting the abiotic conditions
that promote their establishment, such as soil nutrients, soil
moisture, or light in the understory by strengthening the ver-
tical forest structure; an approach that fits seamlessly with
close-to-nature forest management [220]. At the same time,
it is important to strengthen competition from other tree spe-
cies by promoting the diversity of both pioneer species that
can compete in the early stages of succession, and of late-
successional species to stimulate forest succession [15, 58,
94, 116, 204-206] (See Table 2).
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Table 2 Possibility of reducing EITS dominance in forest ecosystems

Table 3 Examples of high-value applications of EITS wood

Species Studies on reducing EITS
dominance in forest ecosys-

tems

[55, 121, 221-223]
[95, 130, 224-230]

[96, 97, 231-242]

[94, 164, 165, 205, 243-258]
[54, 70, 124, 259-264]

Ailanthus altissima
Eucalyptus globulus
Pinus radiata
Prunus serotina

Robinia pseudoacacia

Contribution of integrated EITS to species diversity
and wood production

Adding a tree species—with its species-specific traits—to an
existing forest ecosystem will change its biological diversity. This
applies equally to native tree species as to EITS [265]. These
effects of EITS on species diversity depend very much on EITS
abundance [97]. When EITS density is high, these effects, nega-
tive or positive, are greater than when EITS occur in lower den-
sity [266]. In cultivated forests (i.e., planted or plantation forests),
EITS are often intensively managed in short-rotation monocul-
ture plantations. This short forest development period usually
prevents the natural regeneration of native woody species compa-
rable to dense, young stands of native trees [267—269]. However,
less intensively managed EITS plantations on longer rotations
and abandoned EITS plantations in many regions host a high
diversity of plants and birds. This phenomenon is well known
for pine and eucalypt plantations [95, 97, 230, 237, 270-272].
In forest ecosystems resilient against EITS dominance, both the
negative and positive impacts of EITS on the species composition
of the forest ecosystems decrease [96, 225, 265]. The negative
effects of the presence of EITS, when dominant, can, in resilient
forests, turn into positive diversity effects due to increasing diver-
sity of habitats [265]. Meanwhile, a gradual adaptation takes place
between species that are already present and EITS [169, 170].
As explained above, due to the pioneer traits of most EITS,
their effects on biodiversity, viewed at the time scale of forest
development, can be a transitional pioneer phase, and these
EITS are likely to decline eventually if sufficient seed sources
of successor species are present [94-96]. Due to this process,
in complex forests, EITS are expected to be found only locally
and temporarily, as they are part of the pioneer stage after dis-
turbance. Also, they can profit from pioneer conditions at forest
edges. But, generally speaking, large-scale negative or positive
effects of EITS can dissolve over time in forest succession while
small-scale pockets of EITS may remain. Therefore, strength-
ening resilience against dominance by EITS is likely to ensure
that potential effects are limited and will not persist for long.
For some EITS, timber production in plantations is an
important reason for planting (e.g., P. radiata, E. globulus
and R. pseudoacacia). The question arises whether these
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Species Saw logs for construction, furni-

ture, or veneer

Ailanthus altissima [121, 157, 223, 273-282]
[153,283-289]
[290-294]

[248, 258, 295-300]

[54,70, 124, 261, 262, 301-307]

Eucalyptus globulus
Pinus radiata
Prunus serotina

Robinia pseudoacacia

EITS and those whose invasive nature prevents forest man-
agers from using them for timber production outside their
area of origin (e.g., P. serotina and A. altissima) can contrib-
ute to wood provisioning in complex forests.

Although in plantation forestry wood production with EITS
may be aimed at low-value applications such as firewood, pulp,
and paper, EITS are also used to supply wood for high-value
applications such as construction framing, furniture, and
veneer (see Table 3). However, management of complex for-
ests is characterised by small-scale interventions that limit the
amount of light on the forest floor, and the additional growth
will be concentrated on a limited number of high-quality trees.
Thus, here too, the density of pioneer tree species — and thus of
EITS — decreases in favour of late successional species.

The preferred high-end application for the hardwood spe-
cies A. altissima, E. globulus, P. serotina and R. pseudoaca-
cia is in flooring, furniture, and veneer while the softwood
P. radiata mainly finds valuable applications as structural
timber but also for furniture. Experience with silviculture
aimed at high-quality wood applications is published for all
example EITS (see Table 4). Sometimes, more publications
on silviculture for quality wood are available from the area
of origin (e.g., E. globulus and P. serotina) and sometimes
from the area of introduction (e.g., A. altissima, P. radiata
and R. pseudoacacia). Given the pioneer nature and rapid
growth of these EITS, the emphasis in quality wood produc-
tion is on striving for a large crown with low crown base and,
in some cases, timely pruning.

Table 4 Wood production with EITS in complex forest for high-qual-
ity wood applications

Species Experience in area of Experience in intro-

origin duction area

Ailanthus altissima [223, 274, 308]
[283, 284, 288, 289]
[294]

[295-300, 313-320]

[180, 275-277, 309]

[310]

[293, 294, 311, 312]

[244, 248-250, 257,
258, 321]

[54,70, 261, 262, 302,
304, 306, 323]

Eucalyptus globulus
Pinus radiata

Prunus serotina

Robinia pseudoa- [322]

cacia
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TRAITS:
* Evergreen coniferous pioneer tree, 15-30 m high

* Negative impact on nutrient availability

NATIVE RANGE:

INTRODUCTION PATHWAYS:
e Silviculture.
INVASION HABITAT:

grassland and dunes.
STATUS:

Thanks to the wind dispersal of its seeds and its ability to germinate and
grow under a range of site conditions, Pinus radiata is an efficient pioneer
and, according to invasion ecology, an invasive tree species. However, due
to its high requirements for light, its invasiveness is usually limited to short
vegetation types with potential for forest development. Once established, P.
radiata becomes like most pine species an efficient nurse tree for native
trees, either spontaneous regeneration or enrichment planting.

*  More climate change tolerant than most competitors
*  Wood: mostly used for construction timber, pulp and paper.

*  Endemic to the Californian Monterey Peninsula and several
islands off the coast of Baja California (Mexico).

*  Pioneer species outside forests in open landscapes, heathlands, dry

* Plantation forests mainly along the California coast into southern
coastal Oregon, New Zealand (where it is the most common non-
native tree), Australia, Chile, SW Europe and South Africa.

*  Occurs locally elsewhere in the temperate climatic zone.

Pinus radiata distribution map; colors indicate gradients of occurrence from
alimited (yell ow) to intensive (red) presence (source: https://www.gbif.org/
species/5285727).

PICTURE : Pinus radiata plantation
stand, with underplanted seedlings of
shade-intolerant (Nothofagus dombeyi,
Nothofagus obliqua), semi-tolerant
(Nothofagus alpina, Laurelia sempervirens)
and shade tolerant native tree species
(Aextoxicon punctatum,; Cryptocarya
alba). South-Central Chile (Photo
Klaus Kremer)

Box.3 Pinus radiata. Invasive conifer and nurse tree

Contribution of EITS to climate resilience

The effects of climate change on forests can be wide-ranging
and complex [324-326]. Warmer temperatures can increase
the frequency and intensity of fires, droughts, and insect out-
breaks, while changes in precipitation can lead to flooding,
soil erosion, and changes in soil moisture. These changes
can cause trees to become stressed and more susceptible
to disease, pests, and wildfire. Due to the complexity of
the mutually interacting effects of climate change, it is still

largely unclear which tree species will face difficulties, lead-
ing to changes in tree species diversity, forest composition
and vegetation structure, as well which will be favoured [60,
327, 328].

Climate change mainly impacts forests with weak mois-
ture or nutrient supply, or with simplified vegetation struc-
ture and restricted tree species diversity and redundancy.
These simplified forests often originated from historical and
current forest use [134, 137, 329]. If EITS propagules are
present, they will often fill the vacant space associated with
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Table 5 EITS resilience to

X N N Species
climate change: Climatic

Large climatic amplitude

Drought resilience Heat resilience

amplitude, drought, and heat
tolerance relative to tree species
present in introduction area

Ailanthus altissima
Eucalyptus globulus
Pinus radiata
Prunus serotina

Robinia pseudoacacia

[157,281, 331]

[150, 154, 336-338]
[234, 294, 343-345]
[244, 348-353]
[54,70, 322, 355-357]

[157,281, 332-335]

[283, 338-342]

[294, 344, 346, 347]

[244, 335, 349-352, 354]
[54, 159, 335, 356, 358-362]

[157, 332,333, 335]
[336-338]

[294, 344, 346, 347]
[244, 335, 349-352]
[54, 262, 335]

the associated disturbances. Given the complexity of climate
change effects—changing disease and pest pressures in addi-
tion to changing abiotic conditions — it is difficult to predict
whether EITS can cope with climate change and contribute
to forest climate resilience in a given region. In general,
however, it can be stated that most EITS will suffer less from

climate change than most competing native tree species due
to their often wider climate amplitude, and drought and heat
tolerance. This also applies to our sample EITS, including
P. radiata which has a very small area of origin, mainly
on the Monterey Peninsula in California, but an extensive
introduced area [330] (see Table 5).

Prunus serotina is a gap tree species capable of quickly restoring the forest
climate after disturbances. Native tree species, with the exception of highly
light-demanding pioneer tree species, regenerate without any problem under P.
serotina, whose nurse tree character is enhanced by its fast-decomposing litter.

TRAITS:
*  Deciduous broadleaf pioneer tree, 20 — 30 m high
*  More climate resilient than most competitors
* Positive impact on nutrient availability
* High quality furniture wood

NATIVE RANGE:
* Eastern North America
INTRODUCTION PATHWAYS:
* Horticulture
e Silviculture
INVASION HABITAT:

¢ Pioneer species in forest margins and open forests, outside forests in

open landscapes, heathlands, dry grasslands, and dunes.
STATUS:

*  Widespread and common in its native range and on the North European
sand belt, from northern France to Poland, where it was extensively
planted in the past.

Occurs locally elsewhere in the temperate climatic zone

Prunus serotina distribution map, colors indicate gradients of occurrence from
limited (vellow) to intensive (red) presence (source https://www.gbif.org/species/
3021850)

3 <y
PICTURE: Native forest succession (Acer
pseudoplatanus, Acer platanoides, Castanea
sativa, Fagus sylvatica, Quercus robur,
Carpinus betulus, Sorbus aucuparia, Rhamnus
rangula, llex aquifolium, Taxus baccata)
in Prunus serotina forest. Waasmunster,
Belgium (Photo Bart Nyssen)

Box.4 Prunus serotina. From herbicide-treated invasive to accelerator of forest succession
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We now delve into the impact of EITS on the ecosystem
components relevant for forest resilience to climate change
effects: abiotic conditions, vegetation structure, and species
composition.

A continuous cycle of nutrients in an ecosystem is a
prerequisite for sustainable provision of ecosystem ser-
vices [363]. In forests, nutrient uptake and litter fall by
trees strongly influence nutrient availability {Lavelle,
2005 #3921} {Lavelle, 2005 #3921} {Lavelle, 2005 #3921}
{Lavelle, 2005 #3921} {Lavelle, 2005 #3921}{Lavelle,
2005 #3921} {Lavelle, 2005 #3921}[364]. Reduced nutri-
ent availability, caused by soil acidification and the loss of
basic cations (e.g., Ca, Mg, K), may threaten the provision-
ing of ecosystem services [365-368]. Soil acidification is a
natural phenomenon in forests (except on limestone), but has
been enhanced by centuries of soil-degrading land use and,
in industrialised regions, by atmospheric deposition of SOx
and NOx [369]. The tree species composition can counteract
this acidification. Trees with litter rich in base cations pre-
vent litter accumulation, accelerate nutrient cycling, promote
a more diverse soil fauna, and increase nutrient availability
in the topsoil [370-372]. Previous studies have identified
such rich litter tree species (e.g., Tilia sp., Acer sp., Fraxi-
nus sp., Prunus sp.) and demonstrated their soil enrichment
capacity [53, 373, 374]. Some of the EITS (e.g., A. altissima,
P. serotina, R. pseudoacacia) can be categorised as rich litter
tree species (See Table 6).

Also the influence of EITS on the moisture supply has
only been investigated for some EITS [388, 407]. For

example, the highly productive E. globulus has been found
to lead to large water consumption [154]. However EITS
with rich litter (e.g., A. altissima, P. serotina, R. pseu-
doacacia) are believed to increase the moisture retention
capacity of the topsoil through addition of organic matter in
the mineral soil. In addition, some EITS can influence the
moisture availability of other tree species when they have
a moisture absorption strategy that is better adapted to the
circumstances [155].

Temperature extremes are strongly buffered in forests
compared to open habitats, with lower below-canopy
maximum temperatures, higher minimum temperatures,
and lower seasonal and interannual variability [408—413].
Ameliorating the forest climate buffers understorey flora and
fauna from heat and potentially also from drought (depending
on the environmental circumstances) and improves survival
and growth in seedlings [134, 414—416]. The microclimate
buffering capacity of forests may provide climatic refugia
during climate warming [408, 409, 417, 418], reducing the
pressure on individuals, populations, species and communities
that follows rapid anthropogenic climate change [417,
419-422]. Vertical complexity and structural heterogeneity
with a closed canopy and the presence of a subcanopy and
of a shrub layer are the most important stand characteristics
for climate buffering capacity [134, 409, 413, 415, 416,
423-427]. Most EITS contribute to these forest structure
traits, which enhance buffering against climatic extremes
(See Table 7).

Table 6 Impact of EITS on

- o Species
Nutrient availability

Positive impact

Negative impact

Ailanthus altissima
Eucalyptus globulus
Pinus radiata
Prunus serotina

Robinia pseudoacacia

[53, 156, 165, 250, 374, 391-402]
[32, 37, 39, 54, 150, 197, 264, 404, 405]#***

[37, 55, 150, 157, 161, 375-378]
[379-387]

[150, 154, 161]*
[149, 388-390]+*
[403 ]

* Observed negative effects of E. globulus litter on nutrient availability may be explained by short rotation
plantations where large quantities of biomass are removed [152, 154, 337, 382]

**Some studies suggest that soil biological processes are not necessarily negatively affected by the pres-

ence of P. radiata [406]

*#% The higher soil acidity in stands with P. serotina observed in this study may reflect the initial high soil
acidity of the stands prior to invasion, which therefore may have been easier to invade [403]

*#%*[n areas with high atmospheric nitrogen pollution, increased N-availability is considered a negative

impact, though
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Table 7 EITS and forest climate
recovery

Species

Fast canopy recovery

Subcanopy and shrub layer

Ailanthus altissima
Eucalyptus globulus *
Pinus radiata

Prunus serotina

Robinia pseudoacacia ***

[121, 157, 281, 428-430]

[121, 281, 428-432]

*

[73, 76, 236, 343] wE
[156, 205, 256, 257, 433-442]

[54,70, 124, 150, 163, 264, 335,
449-455]

[94, 156, 165, 243, 401, 403, 436-448]
[54,70, 150, 163, 456, 457]

* A contribution of E. globulus to forest recovery or the formation of a subcanopy or shrub layer is not
mentioned. Probably this tree species is limited in this by its high light requirement and low invasive nature

** For P. radiata, only a contribution to forest recovery is mentioned, not the formation of a subcanopy or
shrub layer of P. radiata. Probably this tree species is limited in this by its high light requirement

*k* R. pseudoacacia also has a high light requirement and a low invasive character. Its ability to form
root sprouts means that this EITS does contribute locally to forest recovery and the formation of a sub-
canopy or shrub layer, although this is limited to open forests such as pine and oak forests

Table 8 Nurse tree effect and regeneration of late successional spe-
cies under EITS

EITS species Nurse tree effect and regen-

eration of native tree species

Ailanthus altissima [55, 221, 222]

Eucalyptus globulus [95, 224-230, 462]

Pinus radiata [96, 97, 231-237, 462]
Prunus serotina [94, 164, 165, 243-245, 258]
Robinia pseudoacacia [70, 124, 259, 260]

Especially in forest restoration, nurse tree effects are
important to initiate forest succession [78, 96, 97, 227, 231,
458-461]. EITS may contribute to the rapid build-up of a
forest canopy, followed by the below-canopy establishment
of late successional species (see Table 8).

Conclusions

EITS integrated into forest ecosystems can
contribute to climate change adaptation.

Because of the pioneer character of most EITS, spontaneous
forest succession limits their dominance in time and space in
most situations. EITS may be temporarily and locally domi-
nant in pioneer situations. However, establishment of mid-
and late-successional tree species under their translucent
canopy should gradually replace them, over several decades,
as long as propagules of these species are present [268, 462].

This integration of EITS in the forest ecosystem can be
enhanced by measures aiming at strengthening resilience
to climate change. In fact, if climate-adaptive forest man-
agement is implemented consistently—optimising abiotic
conditions, enhancing structural diversity of the canopy, and
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increasing tree species diversity—the (dominant) occurrence
of EITS in these forests may be reduced and eventually EITS
may become regular trees among the other tree species. This
may contribute to forest functional diversity and functional
redundancy, which helps to secure the continuous provision-
ing of ecosystem services. For example, P. radiata may be
able to fulfil functions of native coniferous tree species that
are affected by severe pests or disturbances. Likewise, R.
pseudoacacia, P. serotina, A. altissima and E. globulus can
act as alternative fast-growing pioneer deciduous trees if
certain native species were to decline.

However, this is only true in regions where climate adapta-
tion is served by a structurally rich forest with high functional
diversity and functional redundancy. In (semi)-arid regions
where forest resilience to climate change is enhanced by giving
trees a large growth space in an open forest [463], the propor-
tion of pioneer tree species, and thus EITS, is likely to increase.

Increased resilience through enhanced tree species func-
tional diversity and functional redundancy will not only
reduce dominance by EITS but also reduces the likelihood
of any new invasive non-native tree and shrub species to
establish in the forest. Reducing forest invasibility is most
effective for tree species with high light requirements and
light transmission. Reducing forest invasibility is most effec-
tive for the majority of EITS (e.g., P. serotina, R. pseudoa-
cacia, A. altissima, E. globulus or P. radiata), which are
light-demanding pioneers. Reducing abundance by forest
succession is less effective for the exceptional EITS com-
bining pioneer traits—e.g., early seed setting, efficient prop-
agule spreading, and rapid juvenile growth—with late suc-
cessional species traits—e.g., shade-tolerant, shade-casting,
and long-lived. The higher the shade-tolerance or the shade-
casting capacity of EITS, the more difficult their integration
into the forest ecosystem without them becoming dominant
tree species. Members of the genus Acer, and more specifi-
cally Acer platanoides, are in this category [190, 191].
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In resilient forest ecosystems EITS may contribute to
further climate change adaptation due to their often higher
drought and heat tolerance, and their pioneer character,
translating into rapid restoration of a forest microclimate
after a stand-replacing disturbance, and a capacity to fulfil
the role of nurse tree for establishment of native late-suc-
cessional species [461]. EITS may further enhance multiple
elements of forest structure: abiotic conditions, vegetation
structure, and species composition.

The extent and manner in which EITS contribute to
climate change adaptation vary depending on the tree
species. Nevertheless, EITS are often approached as a
homogeneous group in studies of their effects on forest
ecosystems [30, 362, 464]. Since the differences between
EITS are similar to the differences among native pioneer

tree species, information important for evaluating such
effects is then insufficiently considered. Given the signifi-
cant variations among EITS, it is essential to impartially
assess their specific contributions to climate change adap-
tation, biodiversity, and ecosystem services, without bias
towards their origin. There is a great need for further forest
research on the autecology, synecology, contribution to
associated biodiversity, ecosystem processes, and ecosys-
tem services of the different EITS in specific contexts,
just as it has been done in the past for native tree species.
EITS have become part of the regional tree species pools
of many areas worldwide [465]. They therefore deserve
intensified fundamental and applied research into their
ecosystem functioning.

Of all example trees in this review, Robinia pseudoacacia is probably one

of the most heat and drought tolerant temperate deciduous tree species
and one of the least invasive. Planted widely over an estimated area of
over 30,000 km?, in North America, Europe, temperate Asia, temperate

Zealand.
TRAITS:

*  More climate resilient than competitors
* Nitrogen fixer, positive impact on soil fertility

NATIVE RANGE:
*  Eastern North America
PATHWAYS:
*  Horticulture
*  Erosion control on dikes, embankments
e Silviculture
INVASION HABITAT:

STATUS:

in South America, South Africa, and China.

species/5352251).

South America, northern and southern Africa, Australia, and New
*  Deciduous broad-leaved pioneer tree, 20-25 m high

*  Wood: biomass, poles, and quality timber for outdoor use

* Pioneer species in forest margins and open forests, outside
forests in open landscape, heathlands, dry grassland, and dunes.

*  Widespread and common in North America and Europe, but also

*  Occurs locally elsewhere in the temperate climatic zone.

Robinia pseudoacacia distribution map; colors indicate gradients of occurrence 1lex aquifolium, Taxus baccata) in adult Ro‘bim‘a
from limited (yellow) to intensive (red) presence (source htips://www.gbiforg/ ~PSeudoacacia forest. Waasmunster, Belgium

LA Poaaln [ o
PICTURE: Massive native forst regeneration
(Acer pseudoplatanus, Acer platanoides, Tilia
cordata, Fagus sylvatica, Quercus robur, Carpinus
betulus, Sorbus aucuparia, Rhamnus frangula,

(Photo Bart Nyssen)

Box.5 Robinia pseudoacacia. A heat and drought tolerant pioneer widely cultivated for wood production
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Integration of EITS is promising for forest managers

Preventing dominance of EITS and enhancing forest resil-
ience under changing climatic conditions are mostly seen
as separate tasks by forest managers. However, this review
shows that these two processes are actually related. For-
est management strategies can target increased ecosystem
resilience to multiple disturbances [144]. Silvicultural
measures aimed at increasing resilience to a changing cli-
mate, can simultaneously contribute to increasing resil-
ience to dominance by EITS, especially if such measures
restore complex forest structure and tree species diversity
[1, 8]. Such an approach also underpins close-to-nature
forest management [433].

The contribution that EITS can make to climate change
adaptation in forests is promising for forest managers: the
large budgets previously reserved for control can be bet-
ter used to further increase resilience of forests to distur-
bances exacerbated by global changes. Also, by integrating
EITS, forest managers have additional tree species at their
disposal to achieve their management objectives.

Here it is essential to emphasise that the integration
potential of EITS depends on physical site characteristics,
the local forest composition and structure, and on the for-
est objectives pursued. Strengthening resilience to EITS
dominance in conjunction with reinforced resilience to the
effects of global warming is not suitable for forests with
a natural open canopy structure or where an open canopy
structure is aimed for (e.g., to achieve established nature
conservation goals or to enhance drought adaptation).
Nor is this approach suitable for mono-specific plantation
forests, except when these should be changed into mixed
structured forests. Resilience — absorption, in this case—
towards EITS may be high in plantations of shade-casting
tree species but the pursued even-aged monoculture has
too little vegetation structure and diversity of tree species
to absorb and adapt to climate change impacts.

Yet, notwithstanding all the differences in how the pres-
ence of distinct EITS works out in diverse forest ecosys-
tems, society has much to gain from a non-biased approach
to these ‘new’ tree species [466]. The sustainable delivery
of forest ecosystem services under rapidly changing cli-
matic conditions may partly depend on EITS.

Key References
e Davis MA, Chew MK, Hobbs RJ, Lugo AE, Ewel JJ,
Vermeij GJ, et al. Don’t judge species on their origins.

Nature. 2011;474(7350):153-4. doi: https://doi.org/10.
1038/474153a.
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This 2011 comment in Nature by renowned ecolo-
gists is an early manifestation of a paradigm shift
among biological invasion researchers. Replacing a
biased anti-exotic stance with a neutral approach to
these new species in both research design and imple-
mentation as a prerequisite for advancing the under-
standing how to deal with newcomers in ecosystems.

e Muys B, Messier C. Climate smart forest management
caught between a rock and a hard place. Annals of For-
est Science. 2023;80(43). doi: https://doi.org/10.1186/
s13595-023-01208-5.

This letter notes the current trend in forest vitality
loss that demonstrates the urgent need for forest
adaptation. Authors note that measures are insuffi-
ciently adopted by foresters in the field and question
the reasons for this inaction that cripples climate-
smart forest management. A way forward is pro-
posed, using a diversity-based no-regret approach
consistent with available knowledge.

e Aquilué N, Messier C, Martins KT, Dumais-Lalonde
V, Mina M. A simple-to-use management approach to
boost adaptive capacity of forests to global uncertainty.
Forest Ecology and Management. 2021;481:118692. doi:
https://doi.org/10.1016/j.foreco.2020.118692.

Using the functional network approach, this paper pro-
vides forest practitioners with a well-researched yet
easy-to-use tool to evaluate functional diversity, vul-
nerability and functional connectivity at the landscape
level. This tool can be used to inform plans for improv-
ing ecosystem adaptability to changing environmental
conditions and societal demands.

e Nikinmaa L, Lindner M, Cantarello E, Jump AS, Seidl
R, Winkel G, et al. Reviewing the use of resilience
concepts in forest sciences. Current Forestry Reports.
2020;6(2):61-80. doi: https://doi.org/10.1007/s40725-
020-00110-x.

This review offers a systematic overview of the recent
forest science literature on resilience - a key concept to
deal with an uncertain future in forestry - , synthesizing
how resilience is defined, assessed and operationalised.

e Brancalion PH, Amazonas NT, Chazdon RL, van Melis
J, Rodrigues RR, Silva CC, et al. Exotic eucalypts:
From demonized trees to allies of tropical forest res-
toration? Journal of Applied Ecology. 2020;57(1):55-
66. doi: https://doi.org/10.1111/1365-2664.13513.

This article presents results of experimental studies on
the effects of using non-native eucalyptus (Eucalyptus
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spp.) as a transitional phase in tropical forest restora-
tion on above-ground biomass accumulation, regen-
eration of native woody species and financial viability.
Many of the negative effects attributed to eucalypts
on the growth and natural regeneration of native trees
depend on characteristics of the production system,
landscape structure, soil and climate in which they are
grown, rather than on the presence of eucalypts per se.

e Forbes A, Norton D. Transitioning Exotic Plantations
to Native Forest: A Report on the State of Knowledge
In: Ministry for Primary Industries NZ, editor. Wel-
lington 2021.

This report, prepared for Te Uru Rakau - New Zea-
land Forestry Service - lays the foundation for national
policy in dealing with EITS. It summarises current
knowledge on how exotic forest - in New Zealand con-
sisting mainly of radiata pine (Pinus radiata D. Don)
- can best be converted to native forest.

e Nicolescu V-N, Rédei K, Mason WL, Vor T, Poet-
zelsberger E, Bastien J-C, et al. Ecology, growth and
management of black locust (Robinia pseudoacacia
L.), a non-native species integrated into European for-
ests. Journal of Forestry Research. 2020;31(4):1081-
101. doi: https://doi.org/10.1007/s11676-020-01116-8.

This review provides a broad overview of the ecology,
adaptability to climate change and contribution to eco-
system services of black locust (Robinia pseudoacacia
L.), a tree species, due to its pioneer traits, regarded
as invasive in large parts of the world where its range
is expected to expand underpredicted climate changes

e Schilthuizen M, Pimenta LPS, Lammers Y, Steenber-
gen PJ, Flohil M, Beveridge NG, et al. Incorporation
of an invasive plant into a native insect herbivore food
web. PeerJ. 2016;4:¢1954. doi: https://doi.org/10.7717/
peerj.1954.

This article presents a solid example of unbiased
research on ecological incorporation of an EITS,
black cherry (Prunus serotina Ehrh.) into native
food webs. The authors conclude that evolutionary
processes can lead to a specialised herbivorous com-
munity on an EITS, reducing invasiveness over time.

e Annighofer P, Kawaletz H, Terwei A, Molder I, Zerbe
S, Ammer C. Managing an invasive tree species—sil-
vicultural recommendations for black cherry (Prunus

serotina Ehrh). Forstarchiv. 2015;86(5):139-52. doi:
https://doi.org/10.4432/0300411286139.

This paper analyses different management options to
derive recommendations for the future management of
black cherry (Prunus serotina Ehrh). The options were
evaluated in terms of economic profitability and eco-
logical compatibility. The results show that there are
promising strategies to integrate these EITS into the for-
est ecosystem, which are effective in reducing its density
and can result in positive income for landowners.

e Brandner R, Schickhofer G. Tree-of-Heaven (Ailanthus
altissima): enormous and wide potential neglected by
the western civilisation. Proceedings of the 11th World
Conference on Timber Engineering Riva del Garda,
Italy2010. p. 1-7.

This article is an early call for an objective approach
to ecosystem services by EITS, in this case Tree
of Heaven (Ailanthus altissima (Mill.) Swingle).
Authors make recommendations regarding the use-
fulness of the wood and point out its wide applica-
tion range for furniture and construction purposes,
reflecting its huge and wide potential.
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